Proceedings — 23rd Annual Conference— IEEE/EMBS Oct.25-28, 2001, Istanbul, TURKEY

Surface EMG and Motor Control of the Upper Extremity in Muscular Dystrophy:
A Pilot Study

Roscoe C. Bowenl, Rami Seliktarl, Tariq Rahmanz, Michael Alexander’®
'School of Biomedical Engineering, Drexel University, Philadelphia PA, 19104
*Pediatric Engineering Research Lab, Al duPont Hospital for Children, Wilmington DE, 19803
3Rehabilitation Medicine, Al duPont Hospital for Children, Wilmington DE, 19803

Abstract-The aims of this pilot study were to determine levels of
EMG potentials generated in arm muscles and examine the
kinematics of hand motion of subjects with Muscular Dystrophy. A
series of tests were designed to record EMG during maximal
isometric force application, and to study synergistic muscular
activity during arm motion. A test-bed was constructed where the
subjects were seated next to a table and were asked to apply
maximum radial force with their elbow flexed at 30°. The force
attitude was 30°, 60°, 90°, and 120° degrees relative to the lateral
aspect. For the dynamic tests, targets were placed along the same
attitudes and the subjects were asked to reach for the target with a
special arm support provision that ensured frictionless sliding. The
limited results obtained to date show that the onset/termination of
muscle activation could be recognized and activity level could be
identified. Synergistic muscle activity and coordination patterns
were identifiable in the subjects tested from the residual muscle
potentials. Kinematic characteristics identified for point-to-point
hand movements resemble those of healthy subjects. These results
support further inquiry into the use of electromyography and motion
patterns as methods for determining motor control strategies in
people with MD.

Keywords—Kinematics, Motor Control, Electromyography, and
Muscular Dystrophy

I. INTRODUCTION

Surface EMG (SEMG) has been used to examine
changes in the power spectrum during isometric and isotonic
contractions to discriminate neurophysiological differences
between healthy and MD subjects [1,2]. SEMG has also been
employed to examine the affects of progressive resistive
training in myotonic MD [3,4]. In disorders such as
Parkinson’s, Huntington’s, Athetosis, Dystonia, Cerebellar
Ataxia and Upper Motor Neuron Syndrome EMG recordings
were employed to show that the characteristic triphasic
agonist-antagonist-agonist EMG burst pattern exists in single
joint rapid arm movements [5]. This study seeks to answer
the question whether the SEMG is sufficiently intact in MD
subjects to facilitate exploration of motor control strategies
that these subjects employ using established methods.

Kinematic features of multijoint arm movement have been
used in an attempt to understand how the CNS executes
control of the movement [6-12]. A thesis for CNS planning
and control of the arm kinematics is termed trajectory
formation. Trajectory formation is subject to changes in arm
posture and the speed of hand movement from initial to final
position. While moving the hand between initial and final
positions in a plane the hand trajectory is roughly straight and
forms a unimodal velocity profile. A ratio of peak velocity to
average velocity of 1.88 has been shown to be constant in
such movements regardless of changes in the movement
amplitude or duration [8]. Moreover, the velocity profile
remains unimodal for repetitive movement sequences but the
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ratio is reduced to 1.57, a range of 1.60-1.90 has been
reported [10, 13,14]. This behavior is independent of the
location of the initial and final positions in the workspace.
However, it should be noted that some investigators argue
that arm movement is planned in the joint variables such as
angular displacements [15,16].

Based on the thesis that CNS planning occurs in the hand
space it can be hypothesized that hand trajectories formation
in the presence of neuromuscular pathology affecting
muscular function will be planned similarly. That is, a
roughly straight hand trajectory and a unimodal velocity
profile will be formed in point-to-point arm movements in
MD even if biomechanical compensation mechanisms are
employed.

II. METHODOLOGY
A. Subjects

Two healthy subjects age 14, 18 and two MD subjects
with Becker’s type MD (BMD) age 18 and Duchenne’s MD
(DMD) type age 14, all right handed volunteered to
participate in the study. Each subject and/or guardian was
informed of the risks and benefits of the research and gave
informed consent.

B. Data Acquisition

BioResearch EMG system with a resolution of 0.1uV and
a sampling frequency of 3000 Hz were used to monitor
muscle activity. The bicep brachii, latissimus dorsi, posterior
and anterior deltoids, lateral head of the triceps,
brachioradialis, carpi ulnaris flexor, and the carpi ulnaris
extensor were monitored. Concurrently, motion of the arm
was tracked at 50 Hz with the aid of a Mac-Reflex motion
analysis system. Passive reflective markers were placed at the
ulnar styloid, humeral epicondyle, acromial process,
sternoclavicular joint, manubrium, xyphoid, mid-span of the
forearm, upper arm, manubrium and clavicle. The forces
produced at the hand during isometric contractions were
recorded with a 6 DOF force/torque sensor anchored to the test
table using sampling rate of 3000 Hz.

C. Test Protocol

Subjects were seated at a test table and were asked to
perform two tests consisting of an isometric and a dynamic
task. Both tasks were conducted in the transverse plane
without any requirement for elevation of the arm. The subject
was positioned at the table with the upper body held erect so
that their upper arm hangs vertically and the forearm
extended at 90°. For the isometric task the force transducer
was fixed to the table at 30° 60°, 90° and 120° degrees
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Fig. 1: Initial posture with the body’s medial/lateral axis aligned
with the X axis of the Cartesian coordinate system fixed in the
table. Attitude lines are set from the X -axis at 30°, 60°, 90°, and 120°
degrees (A). The force transducer was placed along these lines for
the isometric task. Targets were located at the site the force
transducer was set for the isometric task. During the isometric task
the forearm segment is supported by the air bearing (B) with the
wrist restricted by the splint fixing the air bearing to the forearm .

attitudes. To position the force transducer, the forearm was
fully pronated, then the arm extended along the attitude line
until 30° degrees flexion between the forearm and upper arm
was reached.

The isometric effort was produced by pushing anteriorly
for 5 seconds then pulling posteriorly for 5 seconds with
maximal force. Subjects were asked to maintain the isometric
force in the anterior/posterior directions as much as possible
but were given no feedback as to the actual direction in which
the forces were being produced. The dynamic test consisted
of moving an air bearing supporting the forearm at the wrist
over target positions (Fig. 1A). Each isometric test site and
the origin served as both a start position and target position.
The wrist joint was constrained by the forearm support, hence
forcing the acquisition of the target to be accomplished by
shoulder and elbow joint rotations and/or changes in upper
body posture (Fig. 1B). Subjects were instructed to conduct
the tests at a self-selected pace and to maintain an upright
posture as much as possible throughout the movement.

III. RESULTS
A. Data Analysis

Data handling and analysis were performed using
Matlab®. EMG data were filtered using a 4™ order
Butterworth low pass filter at a cutoff frequency of 6 Hz,
linear enveloped and then normalized to the maximum value.
Force data were calibrated and superimposed with the
corresponding SEMG. Tangential velocities were obtained
from the hand coordinates (X, y), which were smoothed using
a 2nd, order Butterworth filter at a cutoff of 12 Hz before
being differentiated.

B. Isometric SEMG

The synergistic actions of the upper extremity musculature
in the healthy subjects were clearly demarcated in the SEMG
pattern during the isometric task. Moreover, similar
synergistic muscle activity patterns were maintained by these
subjects at the various positions tested as illustrated in Fig.
2A. These results simply confirm that during isometric

2001, Istanbul, TURKEY

pushing/pulling actions the level of EMG potential generated
increases with the force [17].

Synergistic muscular activity produced by the DMD
subject is not as easily discriminated. The complexity of
synergistic muscle coordination generated by this subject in
order to produce a maximal isometric effort is shown in Fig.
2B. The figure also demonstrates that while producing a
maximal effort a muscle’s role as a flexor or an extensor is
not as clearly discernable as in the healthy subject. Yet, the
initiation and termination of the isometric effort is evident
within the SEMG in the MD subjects tested even though all
available muscles may be contributing throughout the effort.
Peak EMG potentials generated during the isometric and
dynamic tests are presented in Table 1.

B. Isometric Force

The level of force the subjects with MD produced was
reduced 30 to 80 percent of the force levels that the healthy
subjects were capable of producing (Fig. 2). These results are
similar to those reported in the literature experienced in
manual muscle testing methods [18]. Generally, the
maximum force level developed by these MD subjects was
produced while attempting to extend the arm by pushing on
the force transducer. Even with a reduction in force level the
subjects were capable of maintaining a constant level of
isometric force for short durations. This result is counter to
what was anticipated based on the fact that flexor muscles
have a tendency to be stronger than extensor muscles in MD.

C. Dynamic Task

The features for the arm motion of the healthy 14 y.o. and
18 y.o. subjects were within reported limits[6-10]. Hand
paths, displacements, and tangential velocities are plotted in
Fig. 3 for a start positions at the origin for the age matched
healthy and DMD subject. The majority of the trajectories
produced by all the subjects were straight point-to-point
trajectories as in Fig. 3. However, for some of the movements
the MD subjects were not capable of acquiring the target in a
single smooth motion. That is, they lack the functional ability
to produce a smooth movement, which causes in attitude
changes throughout the path to be formed within the
movement.

Both the healthy subjects had a mean V pea/Vinean ratio that
falls in the reported range of 1.60-1.90 [10, 13-15], as does
the BMD subject however, in the DMD subject this ratio
increased to a mean ratio of 2.35. The peak velocity to
different targets from the same initial position can vary even
though the peak velocity to and from the target remains
roughly equivalent. Subjects produced more or less the same
peak velocity throughout the activity when they acquired
targets from the origin as in Fig. 3.

The velocity profiles of the healthy subjects are unimodal

Table 1
Peak EMG potentials produced during testing.
Subject Isometric Dynamic
Healthy 18 yo 300 uv 100 pV
Healthy 14 yo 250 uv 100 uV
BMD 150 v 40 pvV
DMD 50 pv ---
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A: Healthy Subject

Fig. 2: SEMG potentials and forces produced by healthy and age matched Duchenne’s MD while executing the isometric push/pull task along the
30° degree attitude. Subjects were instructed to produce a maximal isometric effort in the an terior/posterior (Y) direction by first pushing
anteriorly then posteriorly for 5 seconds respectively. The SEMG potentials of individual muscles are normalize to their maximum value for the

given effort.
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B: DMD Subject

for most of the point-to-point hand movements. A bimodal
velocity profile was occasionally generated when the air
bearing failed at the edge momentarily introducing a
significantly higher friction coefficient. In the MD subjects
the inability to maintain functional control over the
movement turns out multi-modal velocity profiles in addition
to the changes introduced by the momentary sticking
described above.

IV. DISCUSSION

Due to the small number of subjects in this study the
following discussion should be treated as preliminary and its
validity is limited to the subjects tested. In this study the
residual motor activity potentials of MD muscles realized
with SEMG as obtained under isometric and dynamic
conditions were at significant levels (Table 1) [1,4].
Moreover, potentials emerged at sufficient levels for use in
studies for the purpose of determining muscle coordination
strategies, estimating muscle contribution, and agonist
selection at onset of movement [3,6,19,20,21]. For the MD
subjects tested the SEMG potential levels generated are
reduced as anticipated [2-4] but they are also large enough to
suggest when and perhaps how much a muscle is contributing
to an effort. This information is key to understanding how the
CNS copes with a neuropathology affecting muscle
pathology as well as function.

Despite being unaware of the force magnitudes being
developed, both the MD and healthy subjects were capable
of maintaining relatively consistent levels for the test
duration as shown in Fig. 2. This suggests that in MD while
the upper extremity may have force-generating capabilities
of adequate strength, the isometric force characteristics these
individuals produce could mimic the healthy model and
should be studied more extensively.

Voluntary integrated muscular activity is necessary to
produce an isometric force or a desired motion. Because the
force-generating capabilities of the affected MD muscle are
reduced the subject must employ adaptive responses. Two
possible approaches the CNS could take to achieve this goal
are altering muscle mechanics or system dynamics.

Adaptation of muscle mechanics may take the form of
altering muscle contributions via changes in coordination
and/or activity level. This is an impression supported by the
isometric test results obtained which suggests that a greater
amount of co-contractive muscle activity is necessary to
produce the desired action.

Breakdown in the ability to maintain a straight smooth
hand trajectory while executing a movement could be a
measure of functional ability. Namely, the greater the
number of trajectory changes between two points indicates a
greater decline in ability. However, even though upper body
motion was allowed and large in amplitude at times in the
MD subjects the hand paths produced were predominantly
straight. This suggests that the compensation mechanisms are
employed in such a manner as to not only assist the
movement but also to constrain hand motion along roughly
straight trajectories. In other words as long as viable
compensation mechanisms can be affectively employed to
produce a desired point-to-point hand movement the
trajectory shall remain relatively straight. Changing the
position of a joint relative to the hands initial position can
alter the system dynamics as well as changing the force-
generating requirement placed upon the individual muscles
Due to muscle skeletal mechanics and the fact the arm
orientation affects system dynamics the initial and final
position of the hand in the work space has an affect on the
individual’s ability to maintain functional control over arm
motion.

V. CONCLUSION

Researchers have used EMG, kinematics, and dynamics
of the upper extremity in research paradigms towards
eliciting principles of motor control [5,7-16, 19-22]. This
work examined some of these parameters in the upper
extremity of two healthy and two MD subjects. The intent
was to establish potential levels generated with SEMG and to
investigate kinematics of the hand trajectories in the
workspace. The preliminary results support the feasibility of
these methods to further explore muscle coordination and
motor control strategies in MD. Based on the thesis that
indeed CNS planning occurs in the hand coordinates to



Fig. 3: Hand path was developed from the origin to the target along the 30 “degree attitude then return to the origin, repeated until each target
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produce straight trajectories, then adaptations made to
preserve trajectory may be determined. Moreover, such work
could provide insight into the hierarchy of CNS motor
control, i.e. is the motion planning in the joint coordinate or
in the hand coordinates as postulated here.
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